Product Code Database
Example Keywords: socks -psp $53-103
barcode-scavenger
   » » Wiki: Energy Development
Tag Wiki 'Energy Development'.
Tag

Energy development is the field of activities focused on obtaining sources of from . These activities include the production of , , and derived sources of energy, and for the that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.

Societies use energy for , , , heating and air conditioning, and communication, for industrial, commercial, agricultural and domestic purposes. Energy resources may be classified as primary resources, where the resource can be used in substantially its original form, or as secondary resources, where the energy source must be converted into a more conveniently usable form. Non-renewable resources are significantly depleted by human use, whereas renewable resources are produced by ongoing processes that can sustain indefinite human exploitation.

Thousands of people are employed in the . The conventional industry comprises the petroleum industry, the natural gas industry, the electrical power industry, and the . New energy industries include the renewable energy industry, comprising alternative and sustainable manufacture, distribution, and sale of .


Classification of resources
Energy resources may be classified as primary resources, suitable for end use without conversion to another form, or secondary resources, where the usable form of energy required substantial conversion from a primary source. Examples of primary energy resources are , , wood fuel, fossil fuels such as coal, oil and natural gas, and uranium. Secondary resources are those such as electricity, , or other synthetic fuels.

Another important classification is based on the time required to regenerate an energy resource. "Renewable resources" are those that recover their capacity in a time significant by human needs. Examples are hydroelectric power or wind power, when the natural phenomena that are the primary source of energy are ongoing and not depleted by human demands. Non-renewable resources are those that are significantly depleted by human usage and that will not recover their potential significantly during human lifetimes. An example of a non-renewable energy source is coal, which does not form naturally at a rate that would support human use.


Fossil fuels
Fossil fuel ( primary non-renewable fossil) sources burn or fuels, which are the remains of the decomposition of plants and animals. There are three main types of fossil fuels: coal, , and . Another fossil fuel, liquefied petroleum gas (LPG), is principally derived from the production of natural gas. Heat from burning fossil fuel is used either directly for space heating and process heating, or converted to mechanical energy for vehicles, industrial processes, or electrical power generation. These fossil fuels are part of the and allow solar energy stored in the fuel to be released.

The use of fossil fuels in the 18th and 19th century set the stage for the Industrial Revolution.

Fossil fuels make up the bulk of the world's current sources. In 2024, 86% of the world's energy needs was met from fossil fuels, up from 81% in 2005.International Energy Agency: Key World Energy Statistics 2007. S. 6 The technology and infrastructure for the use of fossil fuels already exist. Liquid fuels derived from petroleum deliver much usable energy per unit of weight or volume, which is advantageous when compared with lower sources such as batteries. Fossil fuels are currently economical for decentralized energy use.

Energy dependence on imported fossil fuels creates risks for dependent countries.Energy Security and Climate Policy: Assessing Interactions. p125Energy Security: Economics, Politics, Strategies, and Implications. Edited by Carlos Pascual, Jonathan Elkind. p210Geothermal Energy Resources for Developing Countries. By D. Chandrasekharam, J. Bundschuh. p91Congressional Record, V. 153, PT. 2, January 18, 2007 to February 1, 2007 edited by U S Congress, Congress (U.S.). p 1618India s Energy Security. Edited by Ligia Noronha, Anant Sudarshan. Oil dependence in particular has led to war,National security, safety, technology, and employment implications of increasing CAFE standards : hearing before the Committee on Commerce, Science, and Transportation, United States Senate, One Hundred Seventh Congress, second session, January 24, 2002. DIANE Publishing. p10 funding of radicals, Ending our-Dependence on Oil - American Security Project. americansecurityproject.org monopolization,Energy Dependency, Politics and Corruption in the Former Soviet Union. By Margarita M. Balmaceda. Psychology Press, December 6, 2007. and socio-political instability. Oil-Led Development : Social, Political, and Economic Consequences. Terry Lynn Karl. Stanford University. Stanford, California, United States.

Fossil fuels are non-renewable resources, which will eventually decline in production Peaking of World Oil Production: Impacts, Mitigation, and Risk Management. Was at: www.pppl.gov/polImage.cfm?doc_Id=44&size_code=Doc and become exhausted. While the processes that created fossil fuels are ongoing, fuels are consumed far more quickly than the natural rate of replenishment. Extracting fuels becomes increasingly costly as society consumes the most accessible fuel deposits. Extraction of fossil fuels results in environmental degradation, such as the and mountaintop removal for coal.

is a form of thermal efficiency, meaning the efficiency of a process that converts chemical potential energy contained in a carrier into or . The fuel economy is the energy efficiency of a particular vehicle, is given as a of distance travelled per unit of consumed. Weight-specific efficiency (efficiency per unit weight) may be stated for , and passenger-specific efficiency (vehicle efficiency) per passenger. The inefficient atmospheric (burning) of fossil fuels in vehicles, buildings, and power plants contributes to urban heat islands.

Conventional production of oil , conservatively, between 2007 and 2010. In 2010, it was estimated that an investment of $8 trillion in non-renewable resources would be required to maintain current levels of production for 25 years. In 2010, governments subsidized by an estimated $500 billion a year. ScienceDaily.com (April 22, 2010) "Fossil-Fuel Subsidies Hurting Global Environment, Security, Study Finds" Fossil fuels are also a source of greenhouse gas emissions, leading to concerns about if consumption is not reduced.

The combustion of fossil fuels leads to the release of into the atmosphere. The fossil fuels are mainly carbon compounds. During , is released, and also , and other fine . The carbon dioxide is the main contributor to recent .Intergovernmental Panel on Climate Change (2007): IPCC Fourth Assessment Report - Working Group I Report on "The Physical Science Basis". Other emissions from fossil fuel power station include , (CO), , volatile organic compounds (VOC), mercury, , , , and other including traces of .NRDC: There Is No Such Thing as "Clean Coal"

A typical generates billions of of electrical power per year. How much electricity does a typical nuclear power plant generate ? - FAQ - U.S. Energy Information Administration (EIA)


Nuclear

Fission
is the use of to generate useful and . Fission of uranium produces nearly all economically significant nuclear power. Radioisotope thermoelectric generators form a very small component of energy generation, mostly in specialized applications such as deep space vehicles.

Nuclear power plants, excluding naval reactors, provided about 5.7% of the world's energy and 13% of the world's electricity in 2012.

In 2013, the IAEA report that there are 437 operational nuclear power reactors, in 31 countries, although not every reactor is producing electricity. In addition, there are approximately 140 naval vessels using nuclear propulsion in operation, powered by some 180 reactors. Naval Nuclear Propulsion, Magdi Ragheb. As of 2001, about 235 naval reactors had been built As of 2013, attaining a net energy gain from sustained nuclear fusion reactions, excluding natural fusion power sources such as the , remains an ongoing area of international physics and engineering research. More than 60 years after the first attempts, commercial fusion power production remains unlikely before 2050. - Projected fusion power timeline

There is an ongoing debate about nuclear power.James J. MacKenzie. Review of The Nuclear Power Controversy by Arthur W. Murphy The Quarterly Review of Biology, Vol. 52, No. 4 (Dec., 1977), pp. 467-468.In February 2010 the nuclear power debate played out on the pages of The New York Times, see A Reasonable Bet on Nuclear Power and Revisiting Nuclear Power: A Debate and A Comeback for Nuclear Power? Proponents, such as the World Nuclear Association, the IAEA and Environmentalists for Nuclear Energy contend that nuclear power is a safe, sustainable energy source that reduces . U.S. Energy Legislation May Be 'Renaissance' for Nuclear Power . Opponents contend that nuclear power poses many threats to people and the environment.

(2025). 9780674065062, Harvard University Press. .

Nuclear power plant accidents include the Chernobyl disaster (1986), Fukushima Daiichi nuclear disaster (2011), and the Three Mile Island accident (1979). There have also been some nuclear submarine accidents. Strengthening the Safety of Radiation Sources p. 14. In terms of lives lost per unit of energy generated, analysis has determined that nuclear power has caused less fatalities per unit of energy generated than the other major sources of energy generation. Energy production from , , and has caused a greater number of fatalities per unit of energy generated due to and effects. with Chernobyl's total predicted linear no-threshold cancer deaths included, nuclear power is safer when compared to many alternative energy sources' immediate, death rate. Comparing Nuclear's latent cancer deaths, such as cancer with other energy sources immediate deaths per unit of energy generated(GWeyr). This study does not include fossil fuel related cancer and other indirect deaths created by the use of fossil fuel consumption in its "severe accident", an accident with more than 5 fatalities, classification. However, the economic costs of nuclear power accidents is high, and meltdowns can take decades to clean up. The human costs of evacuations of affected populations and lost livelihoods is also significant.

Comparing Nuclear's latent cancer deaths, such as cancer with other energy sources immediate deaths per unit of energy generated(GWeyr). This study does not include fossil fuel related cancer and other indirect deaths created by the use of fossil fuel consumption in its "severe accident" classification, which would be an accident with more than 5 fatalities.

As of 2012, according to the , worldwide there were 68 civil nuclear power reactors under construction in 15 countries, approximately 28 of which in the People's Republic of China (PRC), with the most recent nuclear power reactor, as of May 2013, to be connected to the , occurring on February 17, 2013, in Hongyanhe Nuclear Power Plant in the PRC. In the United States, two new Generation III reactors are under construction at . U.S. nuclear industry officials expect five new reactors to enter service by 2020, all at existing plants. In 2013, four aging, uncompetitive, reactors were permanently closed.

Recent experiments in extraction of uranium use polymer ropes that are coated with a substance that selectively absorbs uranium from seawater. This process could make the considerable volume of uranium dissolved in seawater exploitable for energy production. Since ongoing geologic processes carry uranium to the sea in amounts comparable to the amount that would be extracted by this process, in a sense the sea-borne uranium becomes a sustainable resource. April 20, 2016 Volume 55, Issue 15 Pages 4101-4362 In this issue:Uranium in Seawater Page 962 to 965

Nuclear power is a low carbon power generation method of producing electricity, with an analysis of the literature on its total life cycle emission intensity finding that it is similar to renewable sources in a comparison of (GHG) emissions per unit of energy generated. Since the 1970s, nuclear fuel has displaced about 64 of carbon dioxide equivalent (GtCO2-eq) , that would have otherwise resulted from the burning of oil, coal or natural gas in fossil-fuel power stations.


Nuclear power phase-out and pull-backs
Japan's 2011 Fukushima Daiichi nuclear accident, which occurred in a reactor design from the 1960s, prompted a rethink of and nuclear energy policy in many countries. Germany decided to close all its reactors by 2022, and Italy has banned nuclear power. Following Fukushima, in 2011 the International Energy Agency halved its estimate of additional nuclear generating capacity to be built by 2035.


Fukushima
Following the 2011 Fukushima Daiichi nuclear disaster – the second worst , that displaced 50,000 households after leaked into the air, soil and sea, and with subsequent radiation checks leading to bans on some shipments of vegetables and fish – a global public support survey by (2011) for energy sources was published and nuclear fission was found to be the least popular. Survey website: Ipsos MORI: Poll: Strong global opposition towards nuclear power .


Fission economics
The economics of new nuclear power plants is a controversial subject, since there are diverging views on this topic, and multibillion-dollar investments ride on the choice of an energy source. Nuclear power plants typically have high capital costs for building the plant, but low direct fuel costs. In recent years there has been a slowdown of electricity demand growth and financing has become more difficult, which affects large projects such as nuclear reactors, with very large upfront costs and long project cycles which carry a large variety of risks. In Eastern Europe, a number of long-established projects are struggling to find finance, notably Belene in Bulgaria and the additional reactors at Cernavoda in Romania, and some potential backers have pulled out. Where cheap gas is available and its future supply relatively secure, this also poses a major problem for nuclear projects.

Analysis of the economics of nuclear power must take into account who bears the risks of future uncertainties. To date all operating nuclear power plants were developed by or where many of the risks associated with construction costs, operating performance, fuel price, and other factors were borne by consumers rather than suppliers. Many countries have now liberalized the electricity market where these risks, and the risk of cheaper competitors emerging before capital costs are recovered, are borne by plant suppliers and operators rather than consumers, which leads to a significantly different evaluation of the economics of new nuclear power plants.

(2025). 9780615124209, Massachusetts Institute of Technology. .


Costs
Costs are likely to go up for currently operating and new nuclear power plants, due to increased requirements for on-site spent fuel management and elevated design basis threats. While first of their kind designs, such as the EPRs under construction are behind schedule and over-budget, of the seven South Korean APR-1400s presently under construction worldwide, two are in S.Korea at the Hanul Nuclear Power Plant and four are at the largest nuclear station construction project in the world as of 2016, in the United Arab Emirates at the planned Barakah nuclear power plant. The first reactor, Barakah-1 is 85% completed and on schedule for grid-connection during 2017. Two of the four EPRs under construction (in and France) are significantly behind schedule and substantially over cost.


Renewable sources
is generally defined as energy that comes from resources which are naturally replenished on a human timescale such as , , , , and geothermal heat. Renewable energy replaces conventional fuels in four distinct areas: electricity generation, hot water/, , and rural (off-grid) energy services.

Including traditional biomass usage, about 19% of global energy consumption is accounted for by renewable resources. Wind powered energy production is being turned to as a prominent renewable energy source, increasing global wind power capacity by 12% in 2021. While not the case for all countries, 58% of sample countries linked renewable energy consumption to have a positive impact on economic growth. At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond.76

Unlike other energy sources, renewable energy sources are not as restricted by geography. Additionally deployment of renewable energy is resulting in economic benefits as well as combating climate change. Rural electrification has been researched on multiple sites and positive effects on commercial spending, appliance use, and general activities requiring electricity as energy. Renewable energy growth in at least 38 countries has been driven by the high electricity usage rates. International support for promoting renewable sources like solar and wind have continued grow.

While many renewable energy projects are large-scale, renewable technologies are also suited to and remote areas and developing countries, where energy is often crucial in human development. To ensure human development continues sustainably, governments around the world are beginning to research potential ways to implement renewable sources into their countries and economies. For example, the UK Government's Department for Energy and Climate Change 2050 Pathways created a mapping technique to educate the public on land competition between energy supply technologies. This tool provides users the ability to understand what the limitations and potential their surrounding land and country has in terms of energy production.


Hydroelectricity
is electric power generated by ; the force of falling or flowing water. In 2015 hydropower generated 16.6% of the world's total electricity and 70% of all renewable electricity and was expected to increase about 3.1% each year for the following 25 years.

Hydropower is produced in 150 countries, with the Asia-Pacific region generating 32 percent of global hydropower in 2010. China is the largest hydroelectricity producer, with 721 terawatt-hours of production in 2010, representing around 17 percent of domestic electricity use. There are now three hydroelectricity plants larger than 10 GW: the Three Gorges Dam in China, across the Brazil/Paraguay border, and in Venezuela.

The cost of hydroelectricity is relatively low, making it a competitive source of renewable electricity. The average cost of electricity from a hydro plant larger than 10 megawatts is 3 to 5 U.S. cents per kilowatt-hour. Hydro is also a flexible source of electricity since plants can be ramped up and down very quickly to adapt to changing energy demands. However, damming interrupts the flow of rivers and can harm local ecosystems, and building large dams and reservoirs often involves displacing people and wildlife. Once a hydroelectric complex is constructed, the project produces no direct waste, and has a considerably lower output level of the than powered energy plants. Renewables 2011 Global Status Report, page 25, Hydropower , REN21, published 2011, accessed 2011-11-7.


Wind
harnesses the power of the wind to propel the blades of . These turbines cause the rotation of , which creates electricity. Wind towers are usually built together on . There are offshore and onshore wind farms. Global wind power capacity has expanded rapidly to 336 in June 2014, and wind energy production was around 4% of total worldwide electricity usage, and growing rapidly.

Wind power is widely used in Europe, Asia, and the United States. Global wind energy markets continue to boom – 2006 another record year (PDF). Several countries have achieved relatively high levels of wind power penetration, such as 21% of stationary electricity production in Denmark, 18% in Portugal, 16% in Spain, 14% in Ireland, and 9% in Germany in 2010. By 2011, at times over 50% of electricity in Germany and Spain came from wind and solar power. Spain Renewable Energy and High Penetration As of 2011, 83 countries around the world are using wind power on a commercial basis.

Many of the world's largest onshore wind farms are located in the United States, China, and India. Most of the world's largest offshore wind farms are located in Denmark, Germany and the United Kingdom. The two largest offshore wind farm are currently the 630 and Gwynt y Môr.

+ Large onshore wind farms
Terra-Gen Press Release , 17 April 2012
AWEA: U.S. Wind Energy Projects – Texas
AWEA: U.S. Wind Energy Projects – Indiana


Solar

Biofuels
A biofuel is a that contains energy from geologically recent . These fuels are produced from . Examples of this occur in and . These fuels are made by a conversion (biomass refers to recently living organisms, most often referring to or plant-derived materials). This biomass can be converted to convenient energy containing substances in three different ways: thermal conversion, chemical conversion, and biochemical conversion. This biomass conversion can result in fuel in , , or form. This new biomass can be used for biofuels. Biofuels have increased in popularity because of rising and the need for .

is an alcohol made by fermentation, mostly from produced in or crops such as or . , derived from non-food sources, such as trees and grasses, is also being developed as a for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a to increase octane and improve vehicle emissions. Bioethanol is widely used in the USA and in Brazil. Current plant design does not provide for converting the portion of plant raw materials to fuel components by fermentation.

is made from and . Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a additive to reduce levels of particulates, , and from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe. However, research is underway on producing renewable fuels from decarboxylation

In 2010, worldwide biofuel production reached 105 billion liters (28 billion gallons US), up 17% from 2009, and biofuels provided 2.7% of the world's fuels for , a contribution largely made up of ethanol and biodiesel. Global production reached 86 billion liters (23 billion gallons US) in 2010, with the United States and Brazil as the world's top producers, accounting together for 90% of global production. The world's largest biodiesel producer is the , accounting for 53% of all biodiesel production in 2010. As of 2011, mandates for blending biofuels exist in 31 countries at the national level and in 29 states or provinces. The International Energy Agency has a goal for biofuels to meet more than a quarter of world demand for transportation fuels by 2050 to reduce dependence on petroleum and coal.


Geothermal
Geothermal energy is generated and stored in the Earth. Thermal energy is the energy that determines the of matter. The geothermal energy of the Earth's crust originates from the original formation of the planet (20%) and from radioactive decay of minerals (80%). How Geothermal energy works . Ucsusa.org. Retrieved on 2013-04-24. The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of from the core to the surface. The adjective geothermal originates from the Greek roots γη (ge), meaning earth, and θερμος (thermos), meaning hot.

Earth's internal heat is thermal energy generated from radioactive decay and continual heat loss from Earth's formation. Temperatures at the core-mantle boundary may reach over 4000 °C (7,200 °F). The high temperature and pressure in Earth's interior cause some rock to melt and solid mantle to behave plastically, resulting in portions of mantle convecting upward since it is lighter than the surrounding rock. Rock and water is heated in the crust, sometimes up to 370 °C (700 °F).

From , geothermal energy has been used for bathing since times and for since ancient Roman times, but it is now better known for electricity generation. Worldwide, 11,400 (MW) of geothermal power is online in 24 countries in 2012. An additional 28 gigawatts of direct geothermal heating capacity is installed for district heating, space heating, spas, industrial processes, desalination and agricultural applications in 2010.Fridleifsson, Ingvar B.; Bertani, Ruggero; Huenges, Ernst; Lund, John W.; Ragnarsson, Arni; Rybach, Ladislaus (2008-02-11), O. Hohmeyer and T. Trittin, ed., The possible role and contribution of geothermal energy to the mitigation of climate change (pdf), IPCC Scoping Meeting on Renewable Energy Sources, Luebeck, Germany, pp. 59–80, retrieved 2009-04-06

Geothermal power is cost effective, reliable, sustainable, and environmentally friendly,Glassley, William E. (2010). Geothermal Energy: Renewable Energy and the Environment, CRC Press, . but has historically been limited to areas near tectonic plate boundaries. Recent technological advances have dramatically expanded the range and size of viable resources, especially for applications such as home heating, opening a potential for widespread exploitation. Geothermal wells release greenhouse gases trapped deep within the earth, but these emissions are much lower per energy unit than those of fossil fuels. As a result, geothermal power has the potential to help mitigate if widely deployed in place of fossil fuels.

The Earth's geothermal resources are theoretically more than adequate to supply humanity's energy needs, but only a very small fraction may be profitably exploited. Drilling and exploration for deep resources is very expensive. Forecasts for the future of geothermal power depend on assumptions about technology, energy prices, , and interest rates. Pilot programs like EWEB's customer opt in Green Power Program Green Power . eweb.org show that customers would be willing to pay a little more for a renewable energy source like geothermal. But as a result of government assisted research and industry experience, the cost of generating geothermal power has decreased by 25% over the past two decades. In 2001, geothermal energy cost between two and ten US cents per kWh.


Oceanic
Marine Renewable Energy (MRE) or marine power (also sometimes referred to as ocean energy, ocean power, or marine and hydrokinetic energy) refers to the energy carried by the mechanical energy of , currents, and , shifts in gradients, and ocean temperature differences. MRE has the potential to become a reliable and renewable energy source because of the cyclical nature of the oceans . The movement of water in the world's oceans creates a vast store of or energy in motion. This energy can be harnessed to generate electricity to power homes, transport, and industries.

The term marine energy encompasses both , i.e. power from surface waves, and , i.e. obtained from the kinetic energy of large bodies of moving water. Offshore wind power is not a form of marine energy, as wind power is derived from the wind, even if the are placed over water. The oceans have a tremendous amount of energy and are close to many if not most concentrated populations. Ocean energy has the potential to provide a substantial amount of new around the world.

(2025). 9783540779315

Marine energy technology is in its first stage of development. To be developed, MRE needs efficient methods of storing, transporting, and capturing ocean power, so it can be used where needed. Over the past year, countries around the world have started implementing market strategies for MRE to commercialize. Canada and China introduced incentives, such as , which are above-market prices for MRE that allow investors and project developers a stable income. Other financial strategies consist of subsidies, grants, and funding from public-private partnerships (PPPs). China alone approved 100 ocean projects in 2019. Portugal and Spain recognize the potential of MRE in accelerating , which is fundamental to meeting the goals of the . Both countries are focusing on solar and offshore wind to attract private investment, ensure cost-effectiveness, and accelerate MRE growth. Ireland sees MRE as a key component to reduce its carbon footprint. The Offshore Renewable Energy Development Plan (OREDP) supports the exploration and development of the country's significant offshore energy potential. Additionally, Ireland has implemented the Renewable Electricity Support Scheme (RESS) which includes auctions designed to provide financial support for communities, increase technology diversity, and guarantee .

However, while research is increasing, there have been concerns associated with threats to marine mammals, habitats, and potential changes to MRE can be a renewable energy source for coastal communities helping their transition from fossil fuel, but researchers are calling for a better understanding of its environmental impacts. Because ocean-energy areas are often isolated from both fishing and sea traffic, these zones may provide shelter from humans and predators for some marine species. MRE devices can be an ideal home for many , , , and ; and may also indirectly affect , and because they feed on those species. Similarly, such areas may create an "" by boosting biodiversity nearby. generated from the technology is limited, also causing fish and mammals living in the area of the installation to return. In the most recent State of Science Report about MRE, the authors claim that there is no evidence for fish, mammals, or seabirds to be injured by either collision, noise pollution, or the electromagnetic field. The uncertainty of its environmental impact comes from the low quantity of MRE devices in the ocean today where data is collected.


100% renewable energy
The incentive to use 100% renewable energy, for electricity, transport, or even total primary energy supply globally, has been motivated by and other ecological as well as economic concerns. Renewable energy use has grown much faster than anyone anticipated. The Intergovernmental Panel on Climate Change has said that there are few fundamental technological limits to integrating a portfolio of renewable energy technologies to meet most of total global energy demand. At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. Also, Stephen W. Pacala and Robert H. Socolow have developed a series of "stabilization wedges" that can allow us to maintain our quality of life while avoiding catastrophic climate change, and "renewable energy sources," in aggregate, constitute the largest number of their "wedges."

Mark Z. Jacobson says producing all new energy with , , and by 2030 is feasible and existing energy supply arrangements could be replaced by 2050. Barriers to implementing the renewable energy plan are seen to be "primarily social and political, not technological or economic". Jacobson says that energy costs with a wind, solar, water system should be similar to today's energy costs.

Similarly, in the United States, the independent National Research Council has noted that "sufficient domestic renewable resources exist to allow renewable electricity to play a significant role in future electricity generation and thus help confront issues related to climate change, energy security, and the escalation of energy costs ... Renewable energy is an attractive option because renewable resources available in the United States, taken collectively, can supply significantly larger amounts of electricity than the total current or projected domestic demand." .

(2025). 9780309137089, National Academies of Science. .

Critics of the "100% renewable energy" approach include and James E. Hansen. Smil and Hansen are concerned about the variable output of solar and wind power, but argues that the can cope, just as it routinely backs up nonworking coal-fired and nuclear plants with working ones.

Google spent $30 million on their "Renewable Energy Cheaper than Coal" project to develop renewable energy and stave off catastrophic climate change. The project was cancelled after concluding that a best-case scenario for rapid advances in renewable energy could only result in emissions 55 percent below the fossil fuel projections for 2050.


Increased energy efficiency
Although increasing the efficiency of energy use is not energy development per se, it may be considered under the topic of energy development since it makes existing energy sources available to do work.Richard L. Kauffman Obstacles to Renewable Energy and Energy Efficiency. in: From Silos to Systems: Issues in Clean Energy and Climate Change. A report on the work of the REIL Network, 2008-2010. Edited by Parker L et al. Yale School of Forestry & Environmental Studies 2010

Efficient energy use reduces the amount of energy required to provide products and services. For example, insulating a home allows a building to use less heating and cooling energy to maintain a comfortable temperature. Installing or natural skylights reduces the amount of energy required for illumination compared to incandescent light bulbs. Compact fluorescent lights use two-thirds less energy and may last 6 to 10 times longer than incandescent lights. Improvements in energy efficiency are most often achieved by adopting an efficient technology or production process. (2007). Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 86.

Https://www.iea.org/reports/net-zero-by-2050, License: CC BY 4.0

Energy efficiency and are said to be the twin pillars of sustainable energy policy. In many countries energy efficiency is also seen to have a national security benefit because it can be used to reduce the level of energy imports from foreign countries and may slow down the rate at which domestic energy resources are depleted.

It's been discovered "that for OECD countries, wind, geothermal, hydro and nuclear have the lowest hazard rates among energy sources in production".


Transmission
While new sources of energy are only rarely discovered or made possible by new , distribution technology continually evolves. The use of in cars, for example, is an anticipated delivery technology.Fuel Cell Materials Technology in Vehicular Propulsion: Report. National Academies, 1983. This section presents the various delivery technologies that have been important to historic energy development. They all rely in way on the energy sources listed in the previous section.


Shipping and pipelines
, and their derivatives are delivered by boat, , or road. Petroleum and natural gas may also be delivered by pipeline, and coal via a . Fuels such as and LPG may also be delivered via . Natural gas pipelines must maintain a certain minimum pressure to function correctly. The higher costs of ethanol transportation and storage are often prohibitive.


Wired energy transfer
Electricity grids are the networks used to transmit and distribute from production source to end user, when the two may be hundreds of kilometres away. Sources include electrical generation plants such as a , coal burning power plant, etc. A combination of sub-stations and transmission lines are used to maintain a constant flow of electricity. Grids may suffer from transient and , often due to weather damage. During certain extreme events can interfere with transmissions. Grids also have a predefined carrying capacity or load that cannot safely be exceeded. When power requirements exceed what's available, failures are inevitable. To prevent problems, power is then rationed.

Industrialised countries such as Canada, the , and Australia are among the highest per capita consumers of electricity in the world, which is possible thanks to a widespread electrical distribution network. The US grid is one of the most advanced, although maintenance is becoming a problem. CurrentEnergy provides a realtime overview of the electricity supply and demand for , , and the Northeast of the US. African countries with small scale electrical grids have a correspondingly low annual per capita usage of electricity. One of the most powerful power grids in the world supplies power to the state of , Australia.


Wireless energy transfer
Wireless power transfer is a process whereby electrical energy is transmitted from a power source to an electrical load that does not have a built-in power source, without the use of interconnecting wires. Currently available technology is limited to short distances and relatively low power level.

Orbiting solar power collectors would require wireless transmission of power to Earth. The proposed method involves creating a large beam of microwave-frequency radio waves, which would be aimed at a collector antenna site on the Earth. Formidable technical challenges exist to ensure the safety and profitability of such a scheme.


Storage
Energy storage is accomplished by devices or physical media that store to perform useful operation at a later time. A device that stores energy is sometimes called an accumulator.

All forms of energy are either (e.g. , , electrical energy, temperature differential, , etc.) or (e.g. ). Some technologies provide only short-term energy storage, and others can be very long-term such as power to gas using or and the storage of heat or cold between opposing seasons in deep aquifers or bedrock. A wind-up clock stores potential energy (in this case mechanical, in the spring tension), a battery stores readily convertible chemical energy to operate a mobile phone, and a dam stores energy in a as gravitational . Ice storage tanks store ice ( in the form of latent heat) at night to meet peak demand for cooling. such as coal and gasoline store ancient energy derived from sunlight by organisms that later died, became buried and over time were then converted into these fuels. Even (which is made by the same process as fossil fuels) is a form of energy stored in form.


History
Since prehistory, when humanity discovered fire to warm up and roast food, through the Middle Ages in which populations built windmills to grind the wheat, until the modern era in which nations can get electricity splitting the atom. Man has sought endlessly for energy sources.

Except nuclear, geothermal and , all other energy sources are from current solar isolation or from fossil remains of plant and animal life that relied upon sunlight. Ultimately, itself is the result of the 's nuclear fusion. from hot, hardened rock above the of the Earth's core is the result of the decay of radioactive materials present beneath the Earth's crust, and relies on man-made fission of heavy radioactive elements in the Earth's crust; in both cases these elements were produced in explosions before the formation of the .

Since the beginning of the Industrial Revolution, the question of the future of energy supplies has been of interest. In 1865, William Stanley Jevons published The Coal Question in which he saw that the reserves of coal were being depleted and that oil was an ineffective replacement. In 1914, U.S. Bureau of Mines stated that the total production was . In 1956, Geophysicist M. King Hubbert deduces that U.S. oil production would peak between 1965 and 1970 and that oil production will peak "within half a century" on the basis of 1956 data. In 1989, predicted peak by Colin Campbell"Oil Price Leap in the Early Nineties," Noroil, December 1989, pages 35–38. In 2004, OPEC estimated, with substantial investments, it would nearly double oil output by 2025Opec Oil Outlook to 2025 Table 4, Page 12


Sustainability
The environmental movement has emphasized of energy use and development.Sustainable Development and Innovation in the Energy Sector. Ulrich Steger, Wouter Achterberg, Kornelis Blok, Henning Bode, Walter Frenz, Corinna Gather, Gerd Hanekamp, Dieter Imboden, Matthias Jahnke, Michael Kost, Rudi Kurz, Hans G. Nutzinger, Thomas Ziesemer. Springer, December 5, 2005. is sustainable in its production; the available supply will not be diminished for the foreseeable future - millions or billions of years. "Sustainability" also refers to the ability of the environment to cope with waste products, especially . Sources which have no direct waste products (such as wind, solar, and hydropower) are brought up on this point. With global demand for energy growing, the need to adopt various energy sources is growing. Energy conservation is an alternative or complementary process to energy development. It reduces the demand for energy by using it efficiently.


Resilience
Some observers contend that idea of "energy independence" is an unrealistic and opaque concept. The alternative offer of "energy resilience" is a goal aligned with economic, security, and energy realities. The notion of resilience in energy was detailed in the 1982 book : Energy Strategy for National Security. Brittle Power: Energy Plan for National Security . Amory B. Lovins and L. Hunter Lovins (1982). The authors argued that simply switching to domestic energy would not be secure inherently because the true weakness is the often interdependent and vulnerable energy infrastructure of a country. Key aspects such as gas lines and the electrical power grid are often centralized and easily susceptible to disruption. They conclude that a "resilient energy supply" is necessary for both national security and the environment. They recommend a focus on energy efficiency and renewable energy that is decentralized. "The Fragility of Domestic Energy." Amory B. Lovins and L. Hunter Lovins. Atlantic Monthly. November 1983.

In 2008, former Intel Corporation Chairman and CEO looked to energy resilience, arguing that complete independence is unfeasible given the global market for energy. "Our Electric Future." . The American. July/August 2008. He describes energy resilience as the ability to adjust to interruptions in the supply of energy. To that end, he suggests the U.S. make greater use of electricity. Electricity can be produced from a variety of sources. A diverse energy supply will be less affected by the disruption in supply of any one source. He reasons that another feature of is that electricity is "sticky" – meaning the electricity produced in the U.S. is to stay there because it cannot be transported overseas. According to Grove, a key aspect of advancing electrification and energy resilience will be converting the U.S. automotive fleet from gasoline-powered to electric-powered. This, in turn, will require the modernization and expansion of the electrical power grid. As organizations such as The Reform Institute have pointed out, advancements associated with the developing would facilitate the ability of the grid to absorb vehicles en masse connecting to it to charge their batteries. Resilience in Energy: Building Infrastructure Today for Tomorrow's Automotive Fuel. Reform Institute. March 2009.


Present and future
[[File:World energy consumption outlook.png|thumb|upright=1.8|Outlook—World Energy Consumption by Fuel (as of 2011)World energy consumption outlook from the International Energy Outlook, published by the U.S. DOE Energy Information Administration
[[Liquid fuel]]s incl. [[Biofuel]]s
[[Coal]]
[[Natural Gas]]
[[Renewable fuel]]s [[Nuclear fuel]]s
]]

International Energy Outlook 2004

Industrialized nations
Developing nations
EE/Former Soviet Union
]]

Extrapolations from current knowledge to the future offer a choice of energy futures. Mandil, C. (2008) "Our energy for the future". S.A.P.I.EN.S. 1 (1) Predictions parallel the Malthusian catastrophe hypothesis. Numerous are complex models based as pioneered by Limits to Growth. Modeling approaches offer ways to analyze diverse , and hopefully find a road to rapid and sustainable development of humanity. Short term are also a concern of energy development. Extrapolations lack plausibility, particularly when they predict a continual increase in oil consumption.

Energy production usually requires an energy investment. Drilling for oil or building a wind power plant requires energy. The fossil fuel resources that are left are often increasingly difficult to extract and convert. They may thus require increasingly higher energy investments. If investment is greater than the value of the energy produced by the resource, it is no longer an effective energy source. These resources are no longer an energy source but may be exploited for value as raw materials. New technology may lower the energy investment required to extract and convert the resources, although ultimately basic physics sets limits that cannot be exceeded.

Between 1950 and 1984, as the transformed around the globe, world grain production increased by 250%. The energy for the Green Revolution was provided by in the form of (natural gas), (oil), and fueled . The peaking of world hydrocarbon production () may lead to significant changes, and require sustainable methods of production. Peak Oil: the threat to our food security retrieved 28 May 2009 One vision of a sustainable energy future involves all human structures on the earth's surface (i.e., buildings, vehicles and roads) doing artificial photosynthesis (using sunlight to split water as a source of hydrogen and absorbing carbon dioxide to make fertilizer) efficiently than plants.Faunce TA, Lubitz W, Rutherford AW, MacFarlane D, Moore, GF, Yang P, Nocera DG, Moore TA, Gregory DH, Fukuzumi S, Yoon KB, Armstrong FA, Wasielewski MR, Styring S. 'Energy and Environment Case for a Global Project on Artificial Photosynthesis.' Energy and Environmental Science 2013, 6 (3), 695 - 698 (accessed 13 March 2013)

With contemporary 's economic activity

(2000). 9780801865329, JHU Press. .
(2010). 9783709103173, Springer. .
and the related private spaceflight, with the manufacturing industries, that go into Earth's orbit or beyond, delivering them to those regions will require further energy development.Propulsion Techniques: Action and Reaction edited by Peter J. Turchi. p341Climate Change: The Science, Impacts and Solutions. Edited by A. Pittock Researchers have contemplated space-based solar power for collecting solar power for use on Earth. Space-based solar power has been in research since the early 1970s. Space-based solar power would require construction of collector structures in space. The advantage over ground-based solar power is higher intensity of light, and no weather to interrupt power collection.


Energy technology
Energy technology is an interdisciplinary having to do with the efficient, safe, environmentally friendly, and economical extraction, conversion, transportation, storage, and use of , targeted towards yielding high efficiency whilst skirting on humans, nature, and the environment.

For people, energy is an overwhelming need, and as a scarce , it has been an underlying cause of political conflicts and wars. The gathering and use of energy resources can be harmful to local ecosystems and may have global outcomes.

Energy is also the capacity to do work. We can get energy from food. Energy can be of different forms such as kinetic, potential, mechanical, heat, light etc. Energy is required for individuals and the whole society for lighting, heating, cooking, running, industries, operating transportation and so forth. Basically there are two types of energy depending on the source s they are; 1.Renewable Energy Sources 2.Non-Renewable Energy Sources


Interdisciplinary fields
As an interdisciplinary science Energy technology is linked with many interdisciplinary fields in sundry, overlapping ways.


Electrical engineering
Electric power engineering deals with the production and use of electrical energy, which can entail the study of machines such as generators, and . involves substations and transformer stations, and . and over networks have meaningful sway on overall energy efficiency. is also widely used and researched.


Thermodynamics
deals with the fundamental laws of energy conversion and is drawn from theoretical .


Thermal and chemical energy
Thermal and chemical energy are intertwined with and environmental studies. has to do with and chemical of all kinds, grates and along with their energy efficiency, and operational safety.

purification technology aims to lessen through sundry mechanical, thermal and chemical cleaning methods. Emission control technology is a field of process and chemical engineering. technology deals with the design, construction and operation of boilers and (also used in nuclear power generation, see below), drawn from applied mechanics and materials engineering.

Energy conversion has to do with internal combustion engines, turbines, pumps, fans and so on, which are used for transportation, mechanical energy and power generation. High thermal and mechanical loads bring about operational safety worries which are dealt with through many branches of applied engineering science.


Nuclear energy
Nuclear technology deals with production from , along with the processing of nuclear fuel and disposal of radioactive waste, drawing from applied , nuclear chemistry and science.

Nuclear power generation has been politically controversial in many countries for several decades but the electrical energy produced through is of worldwide importance. There are high hopes that technologies will one day replace most fission reactors but this is still a research area of .


Renewable energy
has many branches.


Wind power
convert wind energy into electricity by connecting a spinning rotor to a generator. draw energy from atmospheric currents and are designed using along with knowledge taken from mechanical and electrical engineering. The wind passes across the aerodynamic rotor blades, creating an area of higher pressure and an area of lower pressure on either side of the blade. The forces of lift and drag are formed due to the difference in air pressure. The lift force is stronger than the drag force; therefore the rotor, which is connected to a generator, spins. The energy is then created due to the change from the aerodynamic force to the rotation of the generator.

Being recognized as one of the most efficient renewable energy sources, wind power is becoming more and more relevant and used in the world. Wind power does not use any water in the production of energy making it a good source of energy for areas without much water. Wind energy could also be produced even if the climate changes in line with current predictions, as it relies solely on wind.

(2011). 9780821389263 .


Geothermal
Deep within the  Earth, is an extreme heat producing layer of molten rock called magma. The very high temperatures from the magma heats nearby groundwater. There are various technologies that have been developed in order to benefit from such heat, such as using different types of power plants (dry, flash or binary), heat pumps, or wells. These processes of harnessing the heat incorporate an infrastructure which has in one form or another a turbine which is spun by either the hot water or the steam produced by it. The spinning turbine, being connected to a generator, produces energy. A more recent innovation involves the use of shallow closed-loop systems that pump heat to and from structures by taking advantage of the constant temperature of soil around 10 feet deep.


Hydropower
Hydropower draws mechanical energy from rivers, ocean waves and . Civil engineering is used to study and build , , and manage coastal resources through and . A low speed spun by flowing water can power an electrical generator to produce electricity.


Bioenergy
Bioenergy deals with the gathering, processing and use of biomasses grown in biological manufacturing, and from which can draw burning fuel. , (both controversial) or hydrogen for can be had from these technologies and used to generate electricity.


Enabling technologies
and Thermal energy storage are classes of technologies that can enable the utilization of sources that would otherwise be inaccessible due to a temperature that is too low for utilization or a time lag between when the energy is available and when it is needed. While enhancing the temperature of available renewable thermal energy, heat pumps have the additional property of leveraging electrical power (or in some cases mechanical or thermal power) by using it to extract additional energy from a low quality source (such as seawater, lake water, the ground, the air, or from a process).

Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of (i.e. by changing the temperature of a medium) or (i.e. through phase changes of a medium, such between water and slush or ice). Short-term thermal storages can be used for peak-shaving in district heating or electrical distribution systems. Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter's cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms). The Drake Landing Solar Community (Alberta, Canada) is illustrative. borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer.Wong, Bill (June 28, 2011), "Drake Landing Solar Community" , IDEA/CDEA District Energy/CHP 2011 Conference, Toronto, pp. 1–30, retrieved 21 April 2013Wong B., Thornton J. (2013). Integrating Solar & Heat Pumps. Renewable Heat Workshop. Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top. Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a . Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).


See also
  • World energy supply and consumption
  • Water-energy nexus

Policy
, Energy policy of the United States, Energy policy of China, Energy policy of India, Energy policy of the European Union, Energy policy of the United Kingdom, Energy policy of Russia, Energy policy of Brazil, Energy policy of Canada, Energy policy of the Soviet Union, Energy Industry Liberalization and Privatization (Thailand)

General
Seasonal thermal energy storage (Interseasonal thermal energy storage), Geomagnetically induced current, Energy harvesting, Timeline of sustainable energy research 2020–present

Feedstock
, , Energy consumption, Materials science, , ,

Others
Thorium-based nuclear power, List of oil pipelines, List of natural gas pipelines, Ocean thermal energy conversion, Growth of photovoltaics


Sources


Journals


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
6s Time